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ABSTRACT

We study the boundary value problem for an elliptic equation with penalty

terms. This problem approximates the boundary value problems with three types

of homogeneous boundary conditions; i) the Dirichlet boundary condition, ii)

the Neumann boundary condition, iii) the mixed boundary condition. We discuss

asymptotic behaviors of the solutions of the above mentioned problems as the 0

coefficient of the penalty term tends to zero. By using one of these

properties, we can approximate the outward normal derivative defined on the

boundary of the approximated problem prescribed with the Dirichlet condition,

which is efficiently available to obtain the numerical solution of free

boundary problems of various types.
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ASYKPTOTIC BEHAVIORS OF THE SOLUTION OF AN

ELLIPTIC EQUATION WITH PENALTY TERNS

Hidaeo Kavarada and Takao Hanada

1. Introduction

Let a0 be connected domain in i
2 with smooth boundary r. Take 0 so as to S

satisfy (1) nl 250; (ii) C1 ° 1-g 0 is a connected domain; (liL) the measure of

so, 1 nla is positive or n.1 is unbounded; (iv) 30 is smooth (see Fig.l).

We shall consider the boundary value problem defined in 11 for every c i 0 and

7ind #9 * in no. such that

in n I

(1.1) - A0 0 in 0

(1.2) .2 .a0 # 0 In a

(1.3) 0 on r

0
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(1.4) n- onr
an n-

(1.5) "0 on an

and 0 (x -+x -

Here n is the outward normal on r to a0 and i0 Is a positive constant. It i

found in Lions (13), Chapter 1, p.80) that the boundary condition which the limit

function of * as c-0 satisfies on r is classified into three types, which

depend upon the relative value of a and B.

In this paper, we study an asymptotic behavior of on r when c Is small

enough. We now summarize the contents of this paper. Section 2 includes four .

Theorems. In section 3, we prepare some Lemmas for the proofs of Theorems.

Sections from 4 to 7 are devoted to the proofs of Theorems.

2. Theorems

2.1 We put

(2.1) K -(#em ()l,-0 on an and 0. 0 (lxI-)).

Then (l.l)-(l.S) are reformulated as follows;

Find $14 K such that

0" 0

* J fvdx , av.K.

0
91 of (22) for o )

There exists a unique solution *c( K) o for (f m . putting

v-9 5 in (2.2), we see that *0 is uniformly bounded in c:

'0
(2)

(2.3) *I ,c n -. ( C < .0

(2)II11., -stands for the no= of v in ,(E).

-2-
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- - - . -- - - - - - - -- - .

where C depends upon only the data f.

When c tends to zero, we can extract a sequence cn (n-i, 2, ... ) such that

1n

(2.4) ,0 *0 weakly in H (no).

Then

C n O
(2.5) #0 strongly in O ( 0, (51).

Let v*H 0(nO) and v be the zero extension of v to n. Passing to the limit

in (2.2) for H' (0) yields

(2.6) f700Vvdx . io, 0v dx v- ,vdx, v G H o,.

from which, we have

0 0 -
(2.7) -6o +o yi f In H-100-

If we assume f eHI l() (.n0), then we have

(2.5) *06 H1(flO)" "0k

By the trace theorem (Nedas [S),

2.9) 0 (r) and -r).Or r "

0
Moreover, 0 satisfies on r:

(3)m1
Theorem 1 Suppose f *H (O) (m-)O).

(a) If 83 -01, then
a 1

01m 2
(2.10) , a 0 in (r).

.(3) theorem was proved in 13] for the case a > 0 and B 0. In

this paper, we give another proof, which is simpler than in [31.

'-3-



(b) If A a 2, then

.o I 1'-
(2.11) (- * +0o°)  -O in H 11

(C) if B<a and a>O, then

(2.12) - 0 in 1 2(r).

Remark I There also holds 0 in the case a+6,L.0 and a<0 under the sameR, arkI Tereals hods 0 r

assumption.

2.2 We nov state our main result as follos.

Theorem 2 Suppose (A 0 (m>.O) and let c be small enough.

(a) If ' -jol, then

3# 01
4)io1 + o(c2(8-a) cB-3a +C2(c+) to R r

(2.13) *I " - -. W+6 r) i "I (r)

where #0 satisfies (2.10).

(b) If 0-a', then

(2.14) *'lr o 0r + °(c' in ,'+(c)
°-.

where 0 satisfies (Z.l).

(C) If 101 cc, the"

st1

(2.13) *r- oJjr + o(c° '  in H 2 r)

0
where 0 satisfies (2.12).

--4-
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2.3 By using (a) of Theorem 2, we have the regularity results about

Theorem 3 Suppose f G H() (kS) and let c be small enough.

if s Iol. then

(2o) I * wO,(r )  O

(2.17) 1 . o(+€-e).

(2.16) tI 9' IIv,(z .o(- )
) 3~g

2.4 The motivation of this paper consists in the integrated penalty method

presented by one of the author (21. The mathematical justification of this

method was done in the sense of distribution. If we use (a) of Theorem 2. we can

prove the key-point of this method in the framework of the Soborev space.
Theorem 4 Suppose f GH (AO0 (m_0) and let c be small enough.

If 63• l. then

21.f 0  . 2 (a+ $))

(2.19) C_ -f + !

SI

Mere s stands for the length of the arc along r.

a aI

r

Fla I



3. Preliminaries 1
The aim of this section is to give some preparatory lemeas which viii be

needed in the proofs of Theorems. 4
3.1 We first introduce some operators defined between traces on r.

(i) Define the mapping

(3.1) T : H2(r) - a - H 2 (r):
( n -r

I* is the solution of the problem; in

(3.2) -6#t + A-€  f in n0

Ir -

where f6H-( 4  ) (mO).

(it) Define the mapping

1 1

(3.4) : H2" (r) 3b- HT r);
b 

r

:i to the solution of (3.2) with f- 0 and the boundary condition

(3.5) + 0) - b.
" r

(20f. Define the mappingl

(3.6) S1  : H 2 (r) 3a . -.i -- ' Gil2  ;
n r

* a is the solution of the problem;

(3.7) -. *+. + 0 in 91

(3.8) O r - a

* L



(3.9) *1 * 0 and * 0 (i *

2* TV an o R ( B t w
We denote Tf, S and R by the restriction of Tf, S and U co II 15). lut we

abbreviate the suffix a hereafter. p

3.2
+-

1..ma 1 Let a, b be arbitrary in H (r). Then

(3.10) Tf(a) - Tf(b) T0(a-b) ,

where TO implies 
T fmO

Proof Let (y a.b) be the solution of (3.2) under the boundary condition A

(3.11) r

Put V-# e b . 7 satisfies
b

(3.12) -AT + A0 T- O In no.

(3.13) ljr - a - b.

Then

(3.14) To(a-b).

On the other hand,

From (3.14) and (3.15) follows (3.10). Here we should note that To t

linear and Tf Is non-linear.

Lemma 2

T and S are homeomorphic from H (r) to H 2(r) and R is homeomorphic from

1 2 (r) to Hm  2 (r) for any m,.O.

-.- 7-
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Proof
1 l - 1 Hm+1

2(r) into H (r). In fact, let a,b( (r)

(aVb). Suppose Tf(a)-Tf(b). Then. by (3.10)

0 - Tf(a) - Tf(b) - T0(a-b) tv 0

because of the strong maximum principle under the assumption )-0. This is

a contradiction.

+1 1

2* Tf is surjective from H 2 (r) onto H (r). In fact, we choose any

2b *H (r). Then. the following problem:

(3.16) -4# + XO " f in 0

(3.17) b

has a unique solution bE H 0) if I 0> 0, which satisfies

bl 0
"  

0

(3.18) b r ECH 
2(r) and b a T* bI).

3,1

3* It is checked that Tf and (Tf)
"- are continuous between H 

2(r) and H 2 (r)

(see 11]).

1

onto Hm2 (r). The repeated use of the above arguments gives that (R )- and

S' are also homeomorphic between H
m + i(r) and H 1 (r).

3.3 Here we give the estimates of the norm of R€ and S, which are crucial for

the proof of Theorems I and 2.

Lema 3 Let c be small enough and suppose I .s and a_0. Then

-8-



1
(3.19) II R'a) ll 1 " o(c" ' ) ll H 1 , for , Zcri

03.20) II ,Rc,)II -o(l)II I 11 for V, C- ,"R
f- r -,r

and m -1

(3.21) II '(a) - alt 1 - I(la) 1111 for Va 6U 2 (r).

Proof Using Creen's formula in the problem defining , e have

(3.22) CBG.J (IqI2+ 0 1 2)dx + Jrl1 2ds - rds.

0

From (3.22) it follows

(3.3) 11* llo.r -A Il a l1o~ r

and

(.24) co-, I1 1  Il 1
T r TT ,r

Using the standard technique to raise up the regularity property of the

solution of partial differential equations, we obtain (3.19) and (3.20).
1

Rew iting (3.5) with an aid of T 0 and Rc, we have for vaG H 2(r)

(3.25) 11 RC(,) -all 1 to- J IT0R(,) H (' 'r m- r .

m oc' -)l RC(,) IIa +, r 1

O o(Ce) II II+ (by 3.20).

- . • . r



1 _1

Here we have used the continuity of T from H 2(r) to H (r).

Lemma 4 Let c be small enough and m_'.0.

(a) If a-o+B+p(-B)> 0 ( 0ER), then

(3.26) mI +°s , rc,_(.e . '

(b) If a+0>0, then
+1

(3.27) II S (a) +,(+)a 11_ , 8 Q(VG Ha2Ir
M r m +--j r

(3.28) II (SC)_l(b) II - (b) lib II , E 2 (r)U+i, r m -- , r

(3.29) U (Sc)- 1 (b) +c'b II - O(c 3 ( *4)) lib 1 1

i 1
M_-j, r 10+7 r

a+-
Vb E-H (r).

Proof We prove this lemma in the two cases. In the first case, ye prove the

2. 2
special case .-R +o{(x 1 x 2 )  l O  _<x 2 <- ,+ } (n0. 2 ) by using the fourier

transformation. Subsequently, we give the plan of the proof in the general

geometry.

V Let

-. , 2wiCx
*(x 1 , C) a • . c(xi, x )dx 2

2 24
and

F(.) • .a(x 2 )dx2 .

2 21
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CD

Here (xlx 2) is the solution of the problem (3.7)-(3.9). Then 4' satisfies

3.0 -2(,B). 2w 2c2(2)A 2

(3.31) 1+- 0"
3x 2

Solving (3.30) and (3.31), we have

(3.3z)c '.; p.-(0+0). (1+4w2. Iw2c2(o+0))i x
(3.32) - oxp(-c x~~ 1(+w* c

From (3.32)

(3.33) ax* c ) *a

We compute

(3.34) . ) + co(a-O).,

I

I-

o*+O -(l* 1.c 2.c2(*G

14(1+442 .Y(4)

From (3.34), it follows

1

(3.33) 2(l+42. ) Z(a ' ) 2

a 16 4. , 2aI "

(1+(1 4w
2 ici2c

2 (M+ ) 2 ) 2

-13.-
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O(C 20 1 2 CI2) m [312 dC.

Hence we obtain

(3.36) I c'SC (a) + E -a 1 . 0(E0 ) Ila
unr m+j ,r

Repeating the simular arguments as above, we conclude (3.27)-(3.29).

2* Let us now deal with the general case. The domain 1 is a regular simply

connected domain; then there exists a (fixed) regular conformal mapping

2w-f(z)-u 1 +iu 2 (Z-x1 +ix 2) which maps fl1 into R+. As a matter of fact.

r is mapped into the u2-axis of v-plane. Then the transformed solution

y (f- )f satisfies

2(mIdz2 2

(3.37) -C2 ) + I ,4 -0 in R;.

(3.38) yt 0 - A(u) - a(f 1 (w)). . -p
U1.0 2

By means of the iterative method proposed in the theory of singular perturba-

tion (see 3]), yc is asymptotically developed in the following way:

(3.39) C . +$1 + 2*B 1 +  +"'" .n(a+B) n
C C C C

Using (3.39), we obtain (3.26)-(3.29) (see the appendix).

3.4 Define

(3.40) c , Ir C. H 2r),

(3.41) 0o. 1o 6 C H 2 (r).
r

Then we have

Lemm 5 Let c .0 (n-1, 2 ... ). Then

-12 -
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(3.42) T wt. J eekl~y in H7(r),

6 0~

(3.42) T T (T weakly in H r),

Proof Retailing (2.4). (3.42) iLs obviLous. Let. 8 b be arbitlrary In H 2(lr).

Then, we denote by q, (y "ab) the solution of the problem:

(3.44) -a# + 0*- 0 in nos

(3.45) *Ir -

By using Green's formula, we have

(3.46) b T o do a T (b)ds "U ( -bAa '' b)dx 0.
no

c
Using (3.10) and taking a - 9-0 in (3.46),

o n 0 Cn-

(3.47) r(Tf(Tb - f °1) bds -rTO(T q ) b ds

(in!)To(b)dT-s.0 (€n  0)

Lema 6 Suppose a-s +O4o(o-B) O (oEtR). Then

S(3.48) f + ,04-8n).T . 0

~1

strongly in H 2 (F) as * 0.
n

Proof By using the definition of Tf and S (1.4) is rewritten as follows:

(3.49) ?T( c ) qs ).

Taking as n and c-cn in (3.26) for a,,O and substituting (3.49), we have

(3.50) II 5(. 1) (aO- ) .' (*n) B)e '6).c n I " (5:) li P" IIn
n fe -- r

-Tr 2'

-13-

I.



Let c .0. Then we conclude (3.48) vith an aid of (2.3).

4. Proof of Theorem 1

(a) Let o-0 and 0 Jul in the assumption of Lema 6. Then o-a+$ 0 and

(3.48) becomes

1

(4.1) Cn-.T ( n) + * 0 strongly In H (r).

By (3.42) and (3.43).

(4.2) Oi°  - ) - .

(b) Leto a-80O. Then a2o •0 and (3.48) becomes

1
• n

(4.3) T (T ) + * 0 strongly In ' (r)

which Implies

0

(.4) T (toh + 0o 0 + 0o .

by the definition of Tf and 0

(c) Let -1, *> and a0 0. Then a- 2)O and (3.48) becomes

C C 1T(n) A.n "--

(4.5) T(T + C -B  0 strongly In H (r)

from which

10°f
(4.6) Tf(( O) (----r) M 0 in H-(r).

Combining (2.8) with the results obtained above, we conclude (2.10)-(2.12).

I

-14-



S.proof of Theorem 2

5.1 Using (3.49). the problem (.)1.)Is transformed Into the following one:

+1

Find a k N (r) such that

(.)T~ (a) 2M c S C(a)

Hereafter we call (5.1) the transmission equation. As a matter of fact, the

solution of (S.1) is equal to the trace *cIr of the solution of the problem

5.2 Let b be arbitrary In K 2(r). Then, combining (5.1) and (3.10). we have

1

(5.2) T (a- b) - c -S~ (a) T ~T(b) R H r)
0 f4

Let us begin to prove (a), In which jai to i assumed. By (a) of Theorem 1. we

have 0 .Therefore we choose b-0 in (5.2). On substituting (3.27) Into

(5.2), we get

(5.3) T 0 (a) C Ce4 .a - £ .SI1(a) T -f(O). o

a O'.TOa) + a C -40 B4e (a) T(0

where S,,(a) *S'(a) +: c -a.

The definition of allows us to rewrite (5.3) by

Let s(),0) be small enough in (5.4).

Using Lomas 2, 3 and 4. we see that the mapping c a tbcm h

contacton appng romN 2(r) onto itself If c is small enough and

Indeed.



-~ r- r ~ -. -

a46~ CS1() ~ O(C~I 3 c0 110 (by 3.19)

am+ r

On the other hand, by (3.21)

1

Here we note that T (0) should be included in H '(r). Therefore, we have co

assume fi Ham(%0

Summing up (5.4). (5.5) and (5.6), we have

(5.7) a - 9Cr (I -cO+ R Sl)L(-c ~T f (0) + (

-" (0) + O(g 2(0-a) + C2(a+6) inH1

Iff

-2a. C-1
We remove into the case -oa-c~-3 .Operating c *(S ) on both sides of

(5.2), we have

-2. C -1 -2a c -1
(5.8) a -C (S ) T (a) + C *(S ) (T (0)).

Let c (00) be small enough. Then £ *(SC) T 0 becomes the contraction mapping

1o
from H (r) onto itself if a-0 and a+ 830. In fact. the boundedness ofT0

and (3.28) yields

-2*~ 1r2

Therefore, by using (5.8), (5.9) and (3.29), we have

9I



( 15.10) 5 C)-IT )-I(C 8 4 T (0) + O(c*+30

1

-C e T (0) + O(et3 c+3S) In N (r).

if o+630 and a0.

Combining (5.7) and (5.10), we obtain (2.13).

5.3 We shall prove (b) of Theorem 2, in which a- B> 0 is assumed. From (b) of

Theorem I follows T (0 )+ 0 oon r. Choose b%#OIr In (5.2). Then ve have
f0 0. 0

(5.11) To1a - 0) C c S (a) . .T ) f 0 o

By (3.27). ve have

(5.12) T 0(.0#o ) + a ,0. C SI(a)

where 1(a) S, (a)+ 2ca. By use of 3t with o-i,

(5.) 0- 0 2.cS (a)

0+1
Then ohIreC S C becomes the contraction mapping from H (r) onto itself it

a2O and c is soall enough. In fact, by (3.19) and (3.27), we have

(.1,) ,' IIR's(,) 1 O " o1,*) Ia 11,

Therefore vs have

,, 2 aC-I 0 +- O
(3.15) a'*'Ir (1- c sa) *o 00(*  ) In , 2 (r).

5.4 Now ve are In the final step to prove (c). In this case, s • S and • 0 are

assumed. (c) of Theorem I gives us Tf(0 10. Put b=a 0  in (5.2). Then we

have

(5.T1) 0 -0s,) -- t( s) - 0.

.3 ~-1"/-



Operating (T0 ) on both sides of (5.16). ve have

0 a -1 C 0 2a -I1:0(5.17) -O.c 2 (T0)-S (a- ,) + c (To)-s(N).

2. -1 9
Repeating the similar arguments as in the proofs of (a) and (b). C (T) s

becomes the contraction sapping from H 2() onto Itself if )|S and C is small

enough. Then ve have

O .2O(o S€ }1(i:2 :(-S (1 0

(5.18) a - + (T )S )(

O~ 0 - 008

o ( ) m (r). i

6. Proof of Theorem 3

6.1 Assume f6Hk (%) (k_1) and 03 .ol. Then. from (2.7) and (2.10). we have

(6.1) 0 1 ,oI(ao ) n 1k+2 (A

,. H_0 (S Hk+ (f).

(6.2 jr6 (r) c -. (r) (o<-+-<1).

By using (2.13) and (6.2), we have

S(6.3) # clr -O(€I - )  in N 2 (!) ' c k-1,6 (r).

By applying the maximum principle to the problem (1.2). (1.3) and (1.5) and

using (6.3), ve obtain

(6.4) II * ( II - o('

We compute on r;

(6.) I + Ik- , r k- IT'l .,r IT'Ik-1, r

-18-
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where a is the arc length of r.

lly (6.3), we have

(6.6) I l r -40c 1)"

From the definition of st. we have

(6.7)- SC(cr 4E H (r). _

Ily (3.27) and (2.13). .C

9. , -€ + F .11 t *C -2°s' )
(6.08) II -L- ll1 .r_ .

k-y. r k , r

Combining (6.6) and (6.6), "6

k-p r, l'a.!

SL.ilarly, we have

because of (6.4), and N 30)

Put 7 #C' Then It satisfies

(.11) -C2(eG+)AT € + I
€ - 0 in a

.Pro. the maximum principle together with (6.9) and (6.1O). It follows

0( -2.

Here we have to assume k.4 to obtain the 0ood regularity of *'. Repeating the

similar arsumaent, we have

-49-



2 .01(3~a)) (k.).
(6.13) II k>)II1

j C

7. Proof of Theorem 4

In the final section we give the proof of Theorem 4 under the drastic

assumption. Suppose 1. R.

In the same way as in l' of the proof of Lemma 4, we transform into -

Then C' satisfies

(7.1) C 2 xp(-c(a+0l ,2(. . B))2 x 2

*(x 1 .C * 1. (1 + 4xp(- 1 inR;

ly (2.13) of Theorem 2. we have

0-0+ nO (r).

|(7.2) C Z so _- . . ...1 . n"T0,

1l' X1-O

by substituting (7.2) into (7.1), we have

(7.I() -V (x1 , )dx 1

.- ,, • , +...
axi 20F

x +
1 x 1 ° (1+4wz I2"€021° ))2"

L" ~ ~W :ompuL te 
!

1

-0027.4) + )

* " *(l.4W~ 2. .tl- 2(k+B)) (l,(l+Awz.C 2 c~+)

- -- ~fl --- -- - - - .- -.- --- - --- * *



From (7.4), we have

(7.5) 2I0 Cd 1 a
li, F-Cll0

Appedi

Tor simplicity, we assume AN 2 ) eC0 () and rewrite i au 1 u)

1O Here we state how to construct # (n-0. 1. 2 .... ) in (3.39). Let *C be the

solution of the following ordinary differential equation:

2 *0
2(*44) 2 20 2

(A.1) -C *-T +a4(0'u * 5 O0 in R

(.)01 0
(A.Z U A0(u2) and 0 *0 (u2 .)

Solving (A.1. 2), we get

(A.3) *0 -A( ,).exp(C(o+B). a(0.u )U1

We compute

( A .4 -CA*! + a (u ,u 2) *

C2(o44) EA + C2084). .{a(0U 2
du 2

2

-a(ullu 2 ).exp{-Cg(4+0) .a(0,u )u1)

Lot *~be the solution of the problem:,
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2 1

2(4+6) 21+ 0Ou 2
(A.S5) -C 2 a(~ 2) il~*-g~Cu 1-. u2) in R;

(A. 6) -o and *O C 2  *)
1

Solving (A.3,6) and computing

~2(a+I). 1 ~ 21 C2(*8). 1
(A.7) C a + (* 2 Cuo2)

we can construct the equation which *2satisfies in the following way:
C

2 2
(A8 2(a+) C 2 2 1

(A.8) -C ~+ a(0,u 2) 0C -C(lo )

(A.9) -o and *2 0~ (U +M~
u1

Using the cascade system defined above, we can obtain n . 1. 2....

2* we put

C A ~ 0 )*. * 0 . 2 (a 46 ) . ~ * 2 n (o 4 4) * ,
(A1)9 #0C OC + C

and

Then w. satisfies

(A.12) C2 (0+0). A * +a(u u) 2 we 0CC CII'2)C'4) in 12
C '2 w£ +

(A.13) IC u 0 and Vc 0 2

from (A.12,13), we have
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'A

(A.14) W, Vi (IL2 ) - (

+

(A. 15) we HI 1 2R' 0 O(C~nl( 4 )

and moreover

(A.6)W. n+2(  <. o().
(,.x6> II R+2)

V We compute

U1 0 " ' , 5ll15o

where

lu s- k ul' 
.-

On the other hand, from (A.16)

(A.19) -1 -Cb 0M1 (r: the u2 axis of v plane).

u1 2

IM

If we choose n+j).m-j (or n m- 1), then we have

10--*
(A.20) s(* -au -(a+$) + ScAlu 2 ) 6 H 2r)

for any AeC7(0).

C!

By noting 1- -C and using the density argument. we conclude

(3.261-13. 29).
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